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The Mayer cluster integrals of a fluid with smooth, repulsive interactions 
are expanded in orders of a well-defined softness parameter. To first but not 
second order in softness, all virial coefficients are given by their hard-sphere 
forms with an effective diameter. A closed asymptotic expression is derived 
for the third virial coefficient which gives excellent results for the inverse 
power and exponential potentials. 
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1. I N T R O D U C T I O N  

There are a variety of problems in statistical mechanics where numerical 
solutions for hard-sphere potentials are known with greater accuracy and 
rigor than those for soft potentials. Examples are the third and higher virial 
coefficients m and density-dependent contributions to transport coefficients. (2~ 
It is thus of interest to find techniques by which these solutions for the hard 
sphere may be generalized to soft potentials. 

One such technique, the subject of this paper, is the delta-function 
expansion of the Mayer function. Although such a method has been discussed 
by Kim, (a~ it does not seem to have been recognized previously that this 
makes possible a systematic expansion in orders of  the softness of  the potential. 
The expansion is closely analogous to Sommerfeld's expression m for the 
derivative of the Fermi distribution; in the present case softness plays the 
same role as temperature in the Fermi problem. 
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Fig. 1. The Mayer function f(r). 

The Mayer function is 

f ( r )  = e -r - -  1 (1) 

where r is the two-body potential. For a sharply repulsive potential, f (r )  
is displayed in Fig. 1. It is a step function for hard spheres. The derivative of 
the Mayer function, h(r) = ~f/~r, is displayed in Fig. 2. For hard spheres, 
h(r) = 8(r - a), where a is the hard-sphere diameter. 

We consider integrals of the form 

j F(r)h(r) dr 

where F(r) is any function that varies slowly compared to the sharp spike 
h(r). If  F(r) is expanded in a Taylor series about a point r0, chosen near the 
peak of  F(r), the integral may be written as 

fo ~ m~_O1 [a~F~ ~o (r - ro)%(r) dr (2) F(r)h(r) dr = = ~ \ Or m lr  =roJo 

h(rl 

Fig. 2. The derivative of the Mayer function. 
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Upon defining the averages 

fo ~ 
(r  m> = rmh(r) dr (3) 

it is seen that a convenient choice of ro is ro = ( r ) .  Then Eq. (2) can be 
rewritten 

f ~  ~ ~1 \~0mF~0r m F(r)h(r)  dr = F(ro) + ]r=ro<(r - <r)) m) (4) 
0 m = 2  

and therefore h(r) can effectively be written as an expansion in derivatives of  
Dirac f-functions, 

h(r) = ~(r - ro) + (-1)m((r  - ( r ) )  m) ~ ~r m 8@ - ro) (5) 
m = 2  

Formal integration of Eq. (5) yields a similar expansion f o r f ( r ) ,  

for f ( r )  = - 1 + h ( r ' )  d r '  

= -tg(ro - r) + ~ l ( - 1 ) ~ ( ( r  - ( r > ) ~ > ~  $(r - ro) (6) 
n l = 2  " 

where 0 is the Heaviside step function. 
The utility of Eqs. (5) and (6) is that, for steeply repulsive potentials, the 

successive coefficients of the f-function derivatives form a rapidly decreasing 
series. This can be seen from a qualitative examination of  Fig. 2. If  the poten- 
tial is nearly a hard sphere, h(r) has a large maximum value N. But since there 
is unit area under the curve, the width of the peak is ~, N -  1. Provided that the 
wings of the peak decay rapidly, the dispersion averages ((r - (r>)m> are of 
order N - m, so Eqs. (5) and (6) are expansions in the small parameter (roN)-  1. 

More specifically, we may consider a class of potentials containing a 
parameter n such that, in the limit n -+  m, the potential becomes a hard 
sphere. Two examples are the inverse power potential 

q~(r) = e(cr/r)" (7) 

and the exponential potential 
q~(r) = r -r/a (8) 

which may be written in the alternate form 

5b(r) = ,e "~'-r~/~ (9) 

When n is large for either potential, N ~ n/ae. It will be shown explicitly that 
the coefficients of Eqs. (5)-(6) for these potentials are O(n-m). 

The present choice of r0 coincides with the effective temperature- 
dependent hard-sphere diameter proposed by Rowlinson ~5~ and utilized by 
Barker and Henderson. c6~ This feature has been pointed out previously by 
Kim.~ a~ 
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This expansion in powers of a softness parameter is somewhat similar to 
that of the well-known liquid theory of Andersen, Weeks, and Chandler 
(AWC). (7) However, AWC generalize the above ro by constructing a tempera- 
ture- and density-dependent effective diameter, and then relate the thermo- 
dynamics of a core fluid to that of a fluid of hard spheres with their effective 
diameter. In the present context, only a temperature-dependent effective 
diameter ro is introduced and higher order corrections are derived explicitly 
without reference to a further generalization of the effective diameter concept. 

Sommerfeld's expression for the derivative of the Fermi distribution 
function is perhaps the best-known example of the delta-function expansion 
technique. The temperature of the Fermi fluid is assumed small compared to 
the degeneracy temperature TF, and coefficients of the analog of Eq. (5) are 
proportional to successively higher powers of (T/TF). This method can be 
used to derive the thermodynamic properties of the ideal Fermi gas and, with 
some modifications, interacting Fermi fluids ~8~ in a series in the small param- 
eter T/TF. Zero temperature is analogous to the hard sphere, and finite 
temperature to the soft potential. One difference is that the derivative of the 
Fermi function is symmetric, so terms in odd powers of(T/TF) do not appear, 
whereas h(r) in general is not symmetric [for the inverse power and exponen- 
tial potential h(r) is skewed right], so that terms of both even and odd m are 
present in Eq. (5). It has been shown C9~ that the Sommerfeld expansion of 
Fermi gas thermodynamic properties is not a convergent series in (T/TF) but 
is an asymptotic expansion, which, however, is in excellent agreement with 
the exact result for small temperature. We shall see that a similar situation 
holds for the virial coefficients of steeply repulsive potentials. 

The remainder of this paper is devoted to a study of virial coefficients of 
such potentials. A closed algebraic expression is derived for the third virial 
coefficient which gives excellent agreement with previous numerical results. 

2. INVERSE P O W E R  POTENTIAL 

For convenience we denote the dispersion averages in Eqs. (5) and (6) by 
Rm, i.e,, 

Rm = ((r - (r)) m) (10) 

It is easily seen by using r instead of r as the integration variable in Eq. 
(3) that, for the inverse power potential, 

(r '~) = ~m(~/kT)ml"F(1 - re~n) 
(11) 

r0 = a(e/kT)l/"F(1 - 1/n) = a(e/kT)l/"[1 + (7In) + O(1]n2)] 

where y is Euler's constant, and therefore 

Rm= ~m(~--T~m/nt~= 0 ( J ) ( -  l)J'P( 1 - m  n J ) [ F ( 1 - 1 ) ] ~  (12) 
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It is shown in the appendix that Rm is O(n-m), so that the inverse power 
potential explicitly satisfies the criteria described below Eq. (6), and hence 
Eq. (6) is a power series with n-  ~ as the expansion parameter. 

We immediately have an interesting result concerning the general virial 
coefficients. The virial coefficients are linear sums of cluster integrals, which 
in general have the form 

; . . .  f dr, drj dr~ ... fijfj~ ... 

These are known through the seventh virial coefficient for hard spheres. (1~ Now 
Eq. (10) may be substituted for t he f ' s  in the integral. The leading term con- 
tains only products of O(ro - r). Now ro is temperature- and n-dependent 
but otherwise constant, so this leading term is simply the (known) virial 
coefficient for a hard sphere with the temperature-dependent diameter to. 

The next-to-leading terms in the product off~s are the cross products 
containing one factor of R2 8'(r - ro) with all other factors being step 
functions. But these terms are O(n -2) and all additional terms are at least 
O(n- 3). Therefore, through O(n- ~), the correct virial coefficients are obtained 
immediately by means of the hard-sphere virial formulas with an effective 
T-dependent diameter r0. Rowlinson (1~ has shown that the third virial 
coefficient is given correctly through O(n-1) by the above effective diameter 
replacement method, and has devised an approximation scheme (5~ for the 
fourth and higher virial coefficients along similar lines. But it appears not to 
have been previously recognized that the exact virial coefficients, through 
O(n-~), may be found with such a simple replacement. 

The effective diameter alone does not give the correct result through 
O(n-2), because of the terms in R~. In general these terms will resemble the 
cluster integrals of the hard-sphere problem, but with one of the volume 
integrals replaced by a surface integral. 

3. EXPONENTIAL POTENTIAL 

The exponential potential is given by Eq. (7). The second (11~ and third (12~ 
virial coefficients for this potential have been analyzed by Bruch. Again it is 
convenient to use q~ as the integration variable, and it is easily found that 

(r m) = am Jo [ln(~o/kT) - In x] m dx e -x (13) 

For reasonably large (~o/kT, the upper limit can, to excellent approxima- 
tion, be replaced by infinity. The error is of order exp( -  (%/kT); in the alter- 
nate form for 4, Eq. (8), the error is ,,~ exp(-  e"), which is extremely small for 
large or moderate n. 
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It is easy to show that, if 2 ~< m <~ 6, 

j = o  \ J  / 
where 

Ij = In i x d x  e - x  (15) 

From Eq. (8), a = o/n, so that Rm is O(n-m) and the criteria described below 
Eq. (6) are again satisfied. 

The Ij may be found from the following properties of the gamma and psi 
functions. ~13~ 

~ m 

x L (16) r(1 + x) = ~ .  m 
= 0  " 

so that - / 1  = :e = Euler's constant, and r0 = a[ln(~o/kT)  + V]; and 

~b(x) = d In P(x) (17) 

d m 
~-~-~ ~b(x)lx=l = (-1)m+lm! ~(m + 1) (18) 

where ~ is the Riemann zeta function. (13> Manipulation of the Taylor series 
expansions of  ]?(l + x) and ~b(1 + x) yields a set of simultaneous equations 
for the Ij and we eventually find, after a straightforward calculation, 

R2 = a2~(2), R8 = 2a3~(3), R~ = a4{6~(4) + 3[~(2)] 2} 

R5 = a5{24~(5) + 20~(2)~(3)} (19) 

R6 -- a6{120~(6) + 90~(2)~(4) + 40[~(3)] 2 + 15[~(2)] 3} 

Note that ~(2) = ~r2/6, ~(4) = ~r4/90, and ~(6) = ~r6/945. 

4. S E C O N D  V IR IAL  COEFF IC IENT  

The second virial coefficient B provides an almost trivial but nevertheless 
instructive example of  the present technique. The expression for B is 

21r/"~ 3 d  
B = "~'Jo r --drf(r ) dr (20) 

We substitute the delta-function expansion, Eq. (6), for f ( r ) .  Although Eq. (6) 
is an infinite series, when applied to Eq. (20) the series can be truncated since 
fourth and higher derivatives of  the integrand vanish. The result is 

B = B (~ + B (2> + B ~a) (21)  
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where 

B <~ = 2~rroa, B ~2~ = 2~rroR2 = O(n-2) ,  B <a~ = ~,rR3 = O(n-3 )  

(22) 

For  example, for the inverse power potential B (~ = (2~r3/3)(r  3j'~ x 
[1 + (37/n) + 0(n-2)], which agrees with the exact B through O(n-1) .  

However, since (r> = ro, the above expressions can be added explicitly 
to give 

B = ~,r(r3> (23) 

which recovers Eq. (20). Thus, although in general the delta-function expan- 
sion o f f ( r )  is valid only for large n, here it gives a closed result valid for all n 
(such that B exists). We shall see that for the third virial coefficient a similar 
closed form results. 

5. THIRD VIRIAL COEFFICIENT 

The third virial coefficient has been examined for the inverse power 
potential by Rowlinson (1~ and for the exponential potential by Bruch. (12~ A 
useful expression for the third virial coefficient is 

io fo C = -- (8r  rz2 dr12 rla drla 

~ r 1 2  + ~'13 

x r23 dr23f(r12)f(rla)f(r23) (24) 
r l2  --r131 

We now substitute the delta-function expansion forf ( r ) ,  Eq. (6), into Eq. (24). 
The result is 

8rr 2 
[ 1 R2(C2oo + Coco + Coo~) C = - - - U  Cooo+ 

1 Ra(Cr + Coco + Coo4) 1 R3(C3oo + Co3o + Coo3) + ~. 3l 

(2!) 5 R~(C220 + C~o~ + Co~.~) + ... (25) 

where 

fo fo Gjk  = r12 dr12 rlz drla rlz+rz3 r23 dr2af(~)(r12)fr f 
Jlrx2 -rzol 

(26) 

f(~ = - O(ro - r)  (27) 

d m- 
f(r~(r) = d ~  8(r - ro) (m >t 2) (28) 

Although the series in Eq. (25) appears to be infinite, in fact a natural 
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t runcat ion occurs. First, since the integration region of  Eq. (26) is symmetr ic  
in r12 - rlz - r28 space, C~je is invariant  under  permuta t ion  of  its indices. 
Second, when r12 < 2ro, 

f; fr12+rxa rla dr13 alraa-rlat r2a drza O(ro - rla)O(ro - r2a) 

= (1/24)r~2 - �89 2 + 2r12ro3 (29) 

This is a fourth-degree polynomial  in r~2, so Cm0o vanishes for  m > 6. 
Similarly, since 

- -  rla dr13 3'(rx3 - ro) r2a dr2a O(ro - r2a) Jlrz2-rlal 
= 1 ~ _ (30) - ~ r ~ 2  + 2ror12 ro 2 

it follows that  Cm2o vanishes for  rn > 4. The  only remaining nonzero integral 
is C222. The  calculation of  the C~j~ is s traightforward;  the results are 

Cooo = - (5/48)r06, 6"200 = - (1/24)ro 4, C3oo = --~ro 3 

C~26 = - + r o  2, C4oo = �89 2, C320 = ro, C5o0 = 5ro (31) 

C6oo = - 5 ,  C~o2 = 3, C222 - 1 

Therefore,  the final result for  C is 

C = zrz[(5/18)r06 + ~ro+R2 - (lO/9)ro3Ra - +ro2R, + 3ro2R22 + �89 

+ 4 r o R ~ R  ~ + (1/18)R6 - -  R4Rz + ~R2  ~] (32) 

For  an inverse power  potential  with very large n, the first term dominates  and 
C = (5rr~as/18)(e/kT)S/"[1 + (67/n)  + O(n-Z)]. 

Unlike the second virial coefficient, this method  does not  give an e x a c t  

expression for  C, as a counterexample can be found. However ,  Eq. (32) 
provides an asymptot ic  expansion for  steep potentials which remains an 
excellent approximat ion  over  a fairly large range o f  the steepness parameter .  

Rowlinson ~1~ has derived the following expression for  C for  an inverse 
power  potential :  

C = C (~> + C (~ (33) 

with 

= !)r(1 !) C<~' ~r2~6\kT]  ~ 3  ~2 - - 

/ e \o l .  & ( _ z y + ~  

x [(nj - 2 ) ( n / -  3 ) ( n / -  4)(nj  - 6)(nj + n k  - 6)]-* (35) 
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Table I. Values of Co for Inverse Power Potential 

Kihara and 
n Eq. (32) Rowlinson Hikita 

9 0.9798351 - -  0.9756 
10 0.9296451 0.9297 - -  
12 0.8643722 0.86439 0.8644 
15 0.8061341 0.80613 0.8069 
18 0.7704327 0.77044 0.7706 
20 0.7534600 0.75346 - -  
25 0.7243374 0.72434 - -  
28 0.7124060 0.71239 - -  
50 0.6856234 - -  - -  

In  Eq. (35), q is a large, odd  integer and  z is the roo t  o f  the equa t ion  

q 

~ o  ( - z ) -k /k !  = 0 (36) 

Rowl inson  gives his results in terms o f  a pa ramete r  Co defined such tha t  

C = eobo2(~/kT) ~ (37) 

where bo = ]rrcr ~. F o r  hard  spheres, Co = 5/8. Table  I shows a compar i son  o f  
Rowl inson ' s  results, numerica l  results due to K i h a r a  and  Hiki ta ,  C14~ and our  
results ob ta ined  by  subst i tut ing Eq. (12) into Eq. (32). 

The  agreement  with Rowl inson  is excellent. However ,  Eq. (32) predic ts  

an infinite C for  n = 6 (because o f  the term in R0), whereas C remains  finite 
for  all n > 3. Thus  the asymptot ic  series, Eq. (32), breaks  down near  n = 6. 
No te  tha t  Rowl inson ' s  formulas ,  Eqs. (33)-(35), suffer f rom a s imilar  defect. 
The  d isagreement  with K i h a r a  and  Hik i t a  at  n = 9 may  reflect the onset  o f  
instabi l i ty  in our  series. 

I t  is interest ing to  l ook  a t  Eq. (32) in a b i t  more  detai l .  Tab le  I I  gives 

Table II. Values of the Dispersion Averages Re 

n = 7  n = 9  n =  12 n = 2 8  n = 50 

R2 0.0532719 0.0285871 0.0146085 0.0023149 0.0006944 
R~ 0.0298178 0.0098020 0.0030896 0.0001526 0.0000231 
R4 0.0497596 0.0099937 0.0020263 0.0000357 0.0000029 
R~ 0.1359816 0.0131592 0.0014670 0.0000073 0.0000003 
R6 0.9042642 0.0285213 0.0015646 0.0000021 4 x 10 -a 
m 
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Table III. Values of the Terms in Eq. (32) 

Term 
in (32) n = 7  n = 9  n =  12 n = 2 8  n =  50 Order 

6 
7 
8 
9 

10 

Total 

1 1 .1425151 0.9795116 0.8644590 0.7118359 0.6711623 n o 
2 0.0298665 0.0144640 0.0068006 0.0009467 0.0002731 n -2 
3 -0.1007875 - 0.0306775 -0.0090839 - 0.0004072 -0.0000599 n7 a 
4 --0.0228158 --0.0043531 --0.0008443 --0.0000140 --0.0000011 n -4 
5 0.0234222 0.0064075 0.0016050 0.0000378 0.0000033 n -4 

0.1127730 0.0106368 0.0011613 0.0000056 0.0000002 n -5 
0.0052694 0.0009060 0.0001429 0.0000011 0.0000001 n- 5 
0.1130330 0.0035652 0.0001956 0.0000003 5.3 x 10 -9 n -6 

-0.0059643 -0.0006428 -0.0000664 -0.0000002 --4.5 x 10 -9 n -6 
0.0001134 0.0000175 0.0000023 9.3 x 10 -9 2.5 x 10 -l~ n -6 

1,2974248 0.9798351 0.8643722 0.7124060 0.6713779 - -  

values of  Rm, and Table  I I I  gives the contr ibut ion of  the successive terms in 
Eq. (32) to Co for  various exponents.  The  order in (n-1) of  each te rm is indi- 
cated;  recall tha t  R,~ is O(n-~). For  large values of  n the terms are clearly 
separated into different orders. But as n becomes smaller, the higher order  
terms become more  impor tan t  until, for  n = 7, the fifth- and sixth-order terms 
are dominant .  (When n = 6, R6 and the contr ibut ion o f  term 8 in Table  I I I  
become infinite.) U p o n  compar ing  Tables I - I I I ,  it is seen that  a reasonable 
criterion for  the accuracy of  the present  method is that  the terms as ordered 
in powers  of  n-1  fo rm a decreasing series, with some allowances made  for  
pari ty considerations. 

I t  may  also be shown, by means  o f  the Tay lo r  series for  the g a m m a  
function, that  the first three terms of  Eq. (32) agree with Rowlinson 's  C (1) 
through O(n-a),  as they should, since bo th  the remainder  of  Eq. (32) and 
Rowlinson 's  C (2~ are O(n-4). 

Equat ion (32) may  also be applied to the exponential  potential.  On 
substituting Eq. (19), we find that  

C 5 ,r2a6{(ln k@ + y)6  + ~r2 + - = ~ ( ln  k ~  7) 4 8~(3)(ln k ~  + y)  a 

+ 1-b'-O-21~r* ( l n k ~ +  Y)2 + [ - ~  ~(5) 

149 ~ 
+ 12-E -0-o j (38) 
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Numerically, this equation is 

C = 5 ~ r 2 a  6 ln~-~+7 +0.98696 lake+7 

- 9.61646(ln r k-T+ 7 ) a +  20.4559(1n k~ + ~,)2 

+ 96.3009(ln ~-~+r176 ) , ) +  0.19071 (39) 

The first three terms of Eq. (39) agree with results derived by Bruch. C12~ The 
fourth and fifth terms coincide with Bruch's upper limit [see his Eq. (18)], 
while the sixth term lies between Bruch's upper and lower limits. 

The numerical calculations of Sherwood and Mason (~5~ are compared 
with Eq. (39) in Table IV. Agreement is excellent over the entire range. Here 
the parameter C* is defined by the equation 

C = C*bo2[ln(r + ~,16 (40) 

where bo = 2~raa. As r  becomes infinite, C* approaches 5/8. 
Kim (3~ has employed the delta-function expansion method to derive the 

third virial coefficient, but instead of using the Mayer cluster integrals, he 
uses the Percus-u (18~ approximation to the radial distribution function. 
In particular, he obtains an incorrect expression for the third virial coefficient 
for a gas of exponentially repulsive molecules. Since the Percus-Yevick radial 
distribution is known to yield the correct third virial coefficient, the reason 
for Kim's discrepancy is not dear. 

Table IV, Values of C* for Exponential 
Potential 

r C* [Eq. (39)] C* (Ref. 15) 

1012 0.6255310 0.62553 
1011 0.6256070 0.62561 
101~ 0.6256996 0.62570 
109 0.6258135 0.62581 
108 0.6259550 0.62596 
107 0.6261325 0.62613 
106 0.6263573 0.62636 
lO s 0.6266505 0.62665 
104 0.6270924 0.62710 
103 0.6283135 0.62829 
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6. D I S C U S S I O N  

The delta-function expansion method has been shown to provide a 
systematic expansion of the thermodynamic properties of a "nearly hard- 
sphere" gas in orders of the softness of the potential. As an explicit example, 
an expression for the third virial coefficient, Eq. (32), has been derived. The 
complicated three-body cluster integrals have been replaced by the simpler 
dispersion averages Rm, Eq. (10). The expression holds for any sufficiently 
steep potential, while the R m a r e  analytically solvable for the special cases of 
inverse power and exponential potentials. The resulting numerical values 
agree very well with previous studies over a wide range of softness. The method 
can also be applied to higher virial coefficients, quantum corrections to the 
virial coefficients, density expansions of pair distribution functions, and 
related problems. 

The present technique may also prove valuable in the study of the density 
dependence of gas transport properties, (17-1~ and particularly to those 
theories that depend in some way on the equilibrium properties of the fluid. (19) 
The latter topic is presently under investigation. 

A P P E N D I X  

Here we prove the result for inverse power potentials that Rm is O(n-m). 
This result is to be expected from the qualitative considerations discussed 
below Eq. (6). 

Let x = n -1. Then Eq. (12) is 

R'~ = 'rm('/kT)r~/" ~ (~)  ( -1) 'F[1-  (m - j )x][r(1-  (A1) 

Now the gamma function is analytic about x = 1 [eL Eq. (16)], so 

F(1 - x) = ~ P,x ~ (A2) 
1=0 

where I" o = 1. Therefore, 

Rm ~ (rm(E/kT) m/n ~ ( j ) ( -1)  j ~,, ~ ~ ... 
j=O k=0 /1=0 /2=0 /j-=0 

x (m - j)ex~xqxl2 ... x~JPkI',lFz2 .-. I'tj (A3) 

The sums may be rearranged so that identical powers of x are grouped 
together, 

Rm = em(r mm ~ ( j ) ( - 1 ) '  ~ x p ~ ( m - j ) ~  ~ P/, (n4) 
Y=O ~=0 k=o (q} I~ 

where {l~} is a set of positive integers (including zero) such that ~ l~ =- k - p. 
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We may  now hold  k and p fixed and  sum over j .  But  

( - 1 ) J ( m - j ) ~  = X~xx 
J=0  J = o  

d k 
= (x~-~)  ( x - -  1)~[x=l (A5) 

which vanishes if  k < m. But k ~< p,  so the coefficient o f  x ;  vanishes i f  
p < m. Hence the first nonvanish ing  te rm in R~ is O(xm), or O(n-m). 
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